Fast NML Computation for Naive Bayes Models

نویسندگان

  • Tommi Mononen
  • Petri Myllymäki
چکیده

The Minimum Description Length (MDL) is an informationtheoretic principle that can be used for model selection and other statistical inference tasks. One way to implement this principle in practice is to compute the Normalized Maximum Likelihood (NML) distribution for a given parametric model class. Unfortunately this is a computationally infeasible task for many model classes of practical importance. In this paper we present a fast algorithm for computing the NML for the Naive Bayes model class, which is frequently used in classification and clustering tasks. The algorithm is based on a relationship between powers of generating functions and discrete convolution. The resulting algorithm has the time complexity of O(n), where n is the size of the data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NML Computation Algorithms for Tree-Structured Multinomial Bayesian Networks

Typical problems in bioinformatics involve large discrete datasets. Therefore, in order to apply statistical methods in such domains, it is important to develop efficient algorithms suitable for discrete data. The minimum description length (MDL) principle is a theoretically well-founded, general framework for performing statistical inference. The mathematical formalization of MDL is based on t...

متن کامل

A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier

With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...

متن کامل

Calculating the Nml Distribution for Tree-structured Bayesian Networks

We are interested in model class selection. We want to compute a criterion which, given two competing model classes, chooses the better one. When learning Bayesian network structures from sample data, an important issue is how to evaluate the goodness of alternative network structures. Perhaps the most commonly used model (class) selection criterion is the marginal likelihood, which is obtained...

متن کامل

Diagnosis of Pulmonary Tuberculosis Using Artificial Intelligence (Naive Bayes Algorithm)

Background and Aim: Despite the implementation of effective preventive and therapeutic programs, no significant success has been achieved in the reduction of tuberculosis. One of the reasons is the delay in diagnosis. Therefore, the creation of a diagnostic aid system can help to diagnose early Tuberculosis. The purpose of this research was to evaluate the role of the Naive Bayes algorithm as a...

متن کامل

TR 09 - 002 Mixed - Membership Naive Bayes Models

In recent years, mixture models have found widespread usage in discovering latent cluster structure from data. A popular special case of finite mixture models are naive Bayes models, where the probability of a feature vector factorizes over the features for any given component of the mixture. Despite their popularity, naive Bayes models suffer from two important restrictions: first, they do not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007